37 research outputs found

    Supplier evaluation and selection in fuzzy environments: a review of MADM approaches

    Get PDF
    In past years, the multi-attribute decision-making (MADM) approaches have been extensively applied by researchers to the supplier evaluation and selection problem. Many of these studies were performed in an uncertain environment described by fuzzy sets. This study provides a review of applications of MADM approaches for evaluation and selection of suppliers in a fuzzy environment. To this aim, a total of 339 publications were examined, including papers in peer-reviewed journals and reputable conferences and also some book chapters over the period of 2001 to 2016. These publications were extracted from many online databases and classified in some categories and subcategories according to the MADM approaches, and then they were analysed based on the frequency of approaches, number of citations, year of publication, country of origin and publishing journals. The results of this study show that the AHP and TOPSIS methods are the most popular approaches. Moreover, China and Taiwan are the top countries in terms of number of publications and number of citations, respectively. The top three journals with highest number of publications were: Expert Systems with Applications, International Journal of Production Research and The International Journal of Advanced Manufacturing Technology

    Extended EDAS Method for Fuzzy Multi-criteria Decision-making: An Application to Supplier Selection

    Get PDF
    In the real-world problems, we are likely confronted with some alternatives that eed to be evaluated with respect to multiple conflicting criteria. Multi-criteria ecision-making (MCDM) refers to making decisions in such a situation. There are any methods and techniques available for solving MCDM problems. The evaluation ased on distance from average solution (EDAS) method is an efficient multi-criteria ecision-making method. Because the uncertainty is usually an inevitable part of he MCDM problems, fuzzy MCDM methods can be very useful for dealing with the eal-world decision-making problems. In this study, we extend the EDAS method o handle the MCDM problems in the fuzzy environment. A case study of supplier election is used to show the procedure of the proposed method and applicability of t. Also, we perform a sensitivity analysis by using simulated weights for criteria to xamine the stability and validity of the results of the proposed method. The results f this study show that the extended fuzzy EDAS method is efficient and has good tability for solving MCDM problems

    Intuitionistic fuzzy edas method: an application to solid waste disposal site selection

    Get PDF
    Evaluation based on Distance from Average Solution (EDAS) is a new multicriteria decision making (MCDM) method, which is based on the distances of alternatives from the average scores of attributes. Classical EDAS has been already extended by using ordinary fuzzy sets in case of vague and incomplete data. In this paper, we propose an interval-valued intuitionistic fuzzy EDAS method, which is based on the data belonging to membership, nonmembership, and hesitance degrees. A sensitivity analysis is also given to show how robust decisions are obtained through the proposed intuitionistic fuzzy EDAS. The proposed intuitionistic fuzzy EDAS method is applied to the evaluation of solid waste disposal site selection alternatives. The comparative and sensitivity analyses are also included

    Fuzzy extension of the CODAS method for multi-criteria market segment evaluation

    Get PDF
    One of the important activities of a company that can increase its competitiveness is market segment evaluation and selection (mse/mss). We can usually consider mse/mss as a multi-criteria decision-making (mcdm) problem, and so we need to use an mcdm method to handle it. Uncertainty is one of the important factors that can affect the process of decision-making. Fuzzy mcdm approached have been designed to deal with the uncertainty of decision-making problems. In this study, a fuzzy extension of the codas (combinative distance-based assessment) method is proposed to solve multi-criteria group decision-making problems. We use linguistic variables and trapezoidal fuzzy numbers to extend the codas method. The proposed fuzzy codas method is applied to an example of market segment evaluation and selection problem under uncertainty. To validate the results, a comparison is performed between the fuzzy codas and two other mcdm methods (fuzzy edas and fuzzy topsis). A sensitivity analysis is also carried out to demonstrate the stability of the results of the fuzz codas. For this aim, ten sets of criteria weights are randomly generated and the example is solved using each set separately. The results of the comparison and the sensitivity analysis show that the proposed fuzzy codas method gives valid and stable results

    MCDM approaches for evaluating urban and public transportation systems: a short review of recent studies

    Get PDF
    Studies related to transportation planning and development have been in the center of activities of many researchers in the past decades. Road congestions issues, economic problems, health problems and environmental problems are some examples of complex problems that can be caused by urban and public transportation in big cities. Evaluating urban and public transportation systems could help to reach effective solutions to overcome these issues. This article presents a short bibliographic review of some recent studies on Multi-Criteria Decision-Making (MCDM) approaches for evaluating urban and public transportation systems. To this aim, Scopus was chosen as the database for making a search on journal articles. Scopus is trusted by major institutions in the world, and all journals covered in this database are inspected for sufficiently high quality each year. The search was made on the journal articles from 2017 to 2022 (July). The analyses presented in this study show that the Analytic Hierarchy Process (AHP) method is the most used method, which has been applied to different studies in the field of urban and public transportation systems based on MCDM approaches. According to the analysis of the number of articles, Turkey is ranked 1st among different countries, and “Budapest University of Technology and Economics” (Hungary) is 1st in the ranking of institutions. Moreover, most of the articles have been published within the “social sciences” subject area. The recent trend in different studies on urban and public transportation systems shows the importance of using MCDM approaches in this field. Moreover, noticeable employment of fuzzy sets in several studies is a point that can shows the significant role of uncertainty in dealing with this type of problems

    Hierarchical Decision-making using a New Mathematical Model based on the Best-worst Method

    Get PDF
    Decision-making processes in different organizations often have a hierarchical and multilevel structure with various criteria and sub-criteria. The application of hierarchical decision-making has been increased in recent years in many different areas. Researchers have used different hierarchical decision-making methods through mathematical modeling. The best-worst method (BWM) is a multi-criteria evaluation methodology based on pairwise comparisons. In this paper, we introduce a new hierarchical BWM (HBWM) which consists of seven steps. In this new approach, the weights of the criteria and sub-criteria are obtained by using a novel integrated mathematical model. To analyze the proposed model, two numerical examples are provided. To show the performance of the introduced approach, a comparison is also made between the results of the HBWM and BWM methodologies. The analysis demonstrates that HBWM can effectively determine the weights of criteria and sub-criteria through an integrated model

    An integrated type-2 fuzzy decision model based on WASPAS and SECA for evaluation of sustainable manufacturing strategies

    Get PDF
    One of the most essential topics for the present and future generations is sustainability. Today, because of threats made by traditional and old manufacturing practices, sustainability has become an essential topic in manufacturing companies. Attaining a sustainable manufacturing process requires making decisions about the strategies of manufacturing. In this paper, a novel integrated model is developed to evaluate sustainable manufacturing strategies. The proposed model is based upon two multi-criteria decision-making (MCDM) methods: WASPAS (Weighted Aggregated Sum Product ASsessment) and SECA (Simultaneous Evaluation of Criteria and Alternatives). Due to the uncertainty of evaluation process, we use interval type-2 fuzzy sets (IT2FSs). An example of evaluating sustainable manufacturing strategies is presented, and a sensitivity analysis is carried out for illustration of the developed approach and validation of it. The findings show the efficiency of the developed model, and based on the considered example, “Eco-efficiency” can be regarded as an effective strategy

    Improved Decision Model for Evaluating Risks in Construction Projects

    Get PDF
    The paper develops an innovative risk evaluation methodology to address the challenges of multicriteria decision-making problem of project evaluation and selection. The methodology considers the fuzzy analytic network process (FANP) to incorporate the interdependencies of different risk factors, and failure mode and effect analysis (FMEA) to conduct the rating analysis of projects to develop the decision matrix. Finally, evaluation based on the distance from the average solution compares alternative projects and reports the optimal solution. The proposed approach allows project managers to engage in the evaluation process and to use fuzzy linguistic values in the assessment process. A case study from the construction sector is selected to verify the efficacy of the proposed approach over other popular approaches in the literature

    The LINGO code and instructions for SECA

    No full text
    The file contains the LINGO code and instructions for using SECA (Simultaneous Evaluation of Criteria and Alternatives) in multi-criteria decision-making problems

    A new approach for solving bi-objective redundancy allocation problem using DOE, simulation and ϵ-constraint method

    No full text
    The redundancy allocation problem (RAP) has been studied for many different system structures, objective functions, and distribution assumptions. In this paper, we present a problem formulation and a solution methodology to maximize the system steady-state availability and minimize the system cost for the repairable series-parallel system designs. In the proposed approach, the components’ time-to-failure (TTF) and time-to-repair (TTR) can follow any distribution such as the Gamma, Normal, Weibull, etc. We estimate an approximation of the steady-state availability of each subsystem in the series-parallel system with an individual meta-model. Design of experiment (DOE), simulation and the stepwise regression are used to build these meta-models. Face centred design, which is a type of central composite design is used to design experiments. According to a max–min approach, obtained meta-models are utilized for modelling the problem alongside the cost function of the system. We use the augmented ε-constraint method to reformulate the problem and solve the model. An illustrative example which uses the Gamma distribution for TTF and TTR is explained to represent the performance of the proposed approach. The results of the example show that the proposed approach has a good performance to obtain Pareto (near-Pareto) optimal solutions (system configurations)
    corecore